Stetigkeitssatz für lineare Abbildungen

Aus testwiki
Zur Navigation springen Zur Suche springen

Einleitung

Der Stetigkeitssatz für lineare Abbildungen liefert äquivalente Bedingungen zu Stetigkeit, die mit topologieerzeugende Funktionalen (Normen, Halbnormen, Gaugefunktionale).

Lineare Abbildungen - endlichdimensionale Vektorräume

Lineare Abbildung T:VW von einem endlichdimensionalen 𝕂-Vektorraum V in einen 𝕂-Vektorraum W sind immer stetig.

Lineare Abbildungen - nicht stetig

Lineare Abbildung T:VW von einem unendlichdimensionalen 𝕂-Vektorraum V in einen 𝕂-Vektorraum W sind auch nicht stetig sein (siehe Beispiele für lineare Abbildungen, die nicht stetig sind.

Stetigkeitssatz für lineare Abbildung - normierte Räumen

Seien (X,X) und (Y,Y) normierte Räume über dem Körper 𝕂 und

T:XY eine lineare Abbildungen, dann sind folgende Aussagen äquivalent:
  • (1) T ist stetig in jedem Punkt xX
  • (2) T ist stetig im Nullvektor 0XX
  • (3) Es existiert ein M>0 mit T(x)YM für alle xX mit xX1
  • (4) Es existiert ein M>0 mit T(x)YMxX für alle xX,

Beweis

Der Beweis erfolgt als Ringschluss von (1) (2) (3) (4) (1)

Korrollar SLA für bilineare Abbildungen

Die Aussage des Stetigkeitssatzes gilt analog für bilineare Abbildungen und normierte Räume: Seien (X1,X1), (X2,X2) und (Y,Y) normierte Räume über dem Körper 𝕂 und

T:X1×X2Y eine bilineare Abbildungen, dann sind folgende Aussagen äquivalent:
  • (1) T ist stetig in jedem Punkt (x1,x2)X1×X2
  • (2) T ist stetig im Nullvektor (0X1,0X2)X1×X2
  • (3) Es existiert ein M>0 mit T(x1,x2)YM für alle (x1,x2)X mit (x1,x2):=max{x1X1,x2X2}1
  • (4) Es existiert ein M>0 mit T(x1,x2)YMx1X1x2X2 für alle (x1,x2)X1×X2,

Bemerkung - Produktraum als Vektorraum

Der Produktraum X1×X2 wird in natürlicher Weise zu einem 𝕂-Vektorraum durch die folgenden Verknüpfungen , :

(x1,x2)(y1,y2):=(x1+y1,x2+y2)λ(x1,x2):=(λx1,λx2)

Mit (x1,x2):=max{x1X1,x2X2} wird X1×X2 ebenfalls zu einem normierten Raum.

Bedeutung des Korrolars

Für das Topologisierungslemma für Algebren ist es hilfreich, die Stetigkeit einem Punkt nachweisen zu müssen. Multiplikation mit Skalaren und die Multiplikation auf der Algebra sind in diesem Kontext bilineare Abbildungen. Dabei ist z.B. (X1,X1):=(𝕂,||) und (X2,X2):=(A,) mit :Ao+ die submultiplikative Norm auf der Algebra A.

Aufgabe - Beweis Korollar

Beweisen Sie das obige Korollar unter Verwendung der Beweisideen aus dem Stetigkeitssatz für lineare Abbildungen. Hinweise:

  • Nutzen Sie dabei die Äquivalenz von

(x1,x2):=max{x1X1,x2X2}1x1X11x2X21.

  • Nutzen Sie für die Abschätzung für (3)(4) die Linearität in jeder Komponente.

Aufgabe - Äquivalenz der Normen - Produktraum

In dem obigen Korollar wird eine Norm (x1,x2):=max{x1X1,x2X2} auf X1×X2 definiert. Zeigen Sie, dass (x1,x2):=x1X1+x2X2 eine äquivalente Norm auf X1×X2 ist.

Operatornorm

Die Bedingung (4) aus dem Stetigkeitssatz für lineare Abbildungen führt zur Einführung der Operatorraum. Damit macht man den Vektorraum der stetigen linearen Funktionen C(V,W) als Teilmenge aller linearen Abbildungen (V,W) selbst zu einem normierten Raum. (der Index C in C(V,W) steht für "continuous" stetig).

Alternative Aussage

Alternativ zu (3) kann man die Aussage auch wie folgt formulieren

(3') Es existiert ein M>0 mit T:=sup{T(x)Y:xX=1}M

Dies ist äquivalent zu

T=supvV{0}T(v)WvV=supvV=1T(v)W=supvV1T(v)W.

Definition: Operatornorm

Seien (V,V) und (W,W) normierte Vektorräume über dem Körper 𝕂 und (V,W):={T:VWT linear} die Menge der linearen Abbildung von V nach W. sei T:VW ein linearer Operator. Dann ist die Operatornorm

:(V,W)0+{}

bezüglich der Vektornormen V und W durch

T:=inf{M0vV:T(v)WMvV}

definiert.

Bemerkung - Operatornorm

Die Operatornorm T liefert eine kleinste obere Schranke für die Streckung von Vektoren aus der der Einheitskugel in (X,X).

Lineare Abbildungen mit endlichdimensionalem Definitionbereich

Für endlichdimensionale Vektorräume ist diese Unterscheidung nicht notwendig, da jede endlichdimensionale lineare Abbildung stetig ist.

Aufgabe 1

Beweisen Sie den Satz, dass lineare Abbildungen mit einem endlichdimensionalen Definitionsbereich V stetig sind.

Beweisidee

Sei dim(V)=n und B=(b1,,bn) eine Basis von nomierten Vektoren für V (d.h. bkV=1 für alle k{1,,n}).

  • Nutzen Sie die Aussage (3) aus dem Stetigkeitssatz für lineare Abbildungen.
  • Wählen Sie v aus der abgeschlossenen Einheitskugel B1V(0V).
  • Stellen Sie v als Linearkombination der Basisvektoren dar.
  • Schätzen Sie die Norm T(v)W nach oben ab.

Bemerkung: Stetigkeit und Normbeschränktheit

Bei stetigen linearen Abbildung von einem normierten Raum (V,V) nach (W,W) ist das Bild T(B1V(0V)) der abgeschlossenen Einheitskugel B1V(0V) bzgl. der Norm W beschränkt.

Stetigkeitssatz für lineare Abbildung auf topologischen Vektorräumen

Seien (X,𝒜) und (Y,𝒜~) topologische Vektorräume mit den Systemen von topologieerzeugenden Gaugefunktionalen über dem Körper 𝕂 und

T:XY eine lineare Abbildungen, dann sind folgende Aussagen äquivalent:
  • (1) T ist stetig in jedem Punkt xX
  • (2) T ist stetig im Nullvektor 0XX
  • (3) α~𝒜~α𝒜,Mα>0xX:xα1T(x)α~Mα
  • (4) α~𝒜~α𝒜,Mα>0xX:T(x)α~Mαxα ,

Beweis SLAT

Auch der Stetigkeitssatz für Lineare Abbildung auf topologischen Vektorräumen (SLAT) wird als Ringschluss von (1) (2) (3) (4) (1) bewiesen.

Korrollar SLAT für bilineare Abbildungen

Die Aussage des Stetigkeitssatzes gilt analog für bilineare Abbildungen und normierte Räume: Seien (X1,𝒜1), (X2,𝒜2) und (Y,𝒜~) normierte Räume über dem Körper 𝕂 und

T:X1×X2Y eine bilineare Abbildungen, dann sind folgende Aussagen äquivalent:
  • (1) T ist stetig in jedem Punkt (x1,x2)X1×X2
  • (2) T ist stetig im Nullvektor (0X1,0X2)X1×X2
  • (3) α~𝒜~α1𝒜1,α2𝒜2,M>0(x1,x2)X1×X2:T(x1,x2)α~M für alle (x1,x2)X1×X2 mit (x1,x2)(α1,α1):=max{x1α1,x2α2}1
  • (4) α~𝒜~α1𝒜1,α2𝒜2,M>0(x1,x2)X1×X2:T(x1,x2)α~Mx1α1x2α2 für alle (x1,x2)X1×X2,

Gaugefunktionale und partielle Ordnung

Die Indexmengen I der Netze werden in Abhängigkeit von der Indexmenge der Gaugefunktionale gewählt. I:=𝒜×+ ist dabei eine geeignete Wahl (siehe Gaugefunktionale und partielle Ordnung).

Siehe auch

Seiteninformation

Diese Lernresource wurde als Wiki2Reveal Foliensatz erstellt.

Wiki2Reveal

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Funktionalanalysis' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.