Gradientenabstiegsverfahren/Gradient - lineares Funktional
Einleitung
Diese Seite zum Thema Gradientenabstiegsverfahren/Gradient - lineares Funktional kann als Wiki2Reveal Folien angezeigt werden. Einzelne Abschnitte werden als Folien betrachtet und Änderungen an den Folien wirken sich sofort auf den Inhalt der Folien aus. Dabei werden die folgenden Teilaspekte im Detail behandelt:
- (1) Ausgangspunkt ist eine lineare Abbildung die in Komponentenfunktionen zerlegt wird.
- (2) auf die Komponentenfunktionen wird ein erweitertes Gradientenabstiegsverfahren angewendet
Zielsetzung
Diese Lernressource wird Gradient eines lineares Funktional adressiert und diesen auf ein Gradientenabstiegsverfahren anzuwenden. Dabei erweitert man das Standardverfahren, um eine Minimierung in Gradientenrichtung. Dieses wertet die Fehlerfunktion in Richtung des normierten Gradienten an endlich vielen Stellen aus und wählt den nächsten Schritt in Abhängigkeit von dem Minimum der Fehlerfunktion.
Lernvoraussetzungen
Die Lernressource zum Thema Gradientenabstiegsverfahren/Gradient - lineares Funktional hat die folgenden Lernvoraussetzungen, die zum Verständnis der nachfolgenden Ausführungen hilfreich bzw. notwendig sind.
- Zerlegung einer lineare Funktionen in Komponentenfunktionen
- Gradient und partielle Ableitungen
Gradientenabstieg für lineares Funktional
Wendet man das Gradientenabstiegsverfahren auf ein lineares Funktional wird bei der aktuellen Position der Gradient der Fehlerfunktion berechnet und der aktuelle Vektor in Richtung des negativen Gradient zu verändert, um den Gesamtfehler zu verkleinern.
Definition des linearen Funktionals
Das lineare Funktional sei über das Skalarprodukt wie folgt definiert:
Partielle Ableitung eines linearen Funktionals
Mit gilt:
Diese partielle Ableitung tritt bei der Ableitung der Fehlerfunktion mit quadratischem Fehler als innere Ableitung auf.
Daten für die Regression
Die Daten für die mehrdimensionale lineare Regression bestehen aus Datenpunkten der Form :
Fehler für Datenpunkt
Für einen einzelnen Datenpunkt kann man mit jeweils den Fehler wie folgt angeben:
Bemerkung - Fehler
Der Fehler ist reellwertig und kann auch negativ sein. Das bedeutet, dass der durch geliefert Wert zu klein im Vergleich zu ist. Bei der Aggregation von reellwertigen Fehlern können sich positive Fehler und negative Fehler bei der Aggregation ausgleichen und ein Gesamtfehler von 0 kann dann nicht als fehlerfrei Regression interpretiert werden.
Aggregation von Einzelfehlern zu Fehlerfunktion
Die obige Fehlerfunktion berechnet den reellwertigen Fehler von einem Datenvektor bzgl. einem Sollwert . Der quadratische Fehler ist nicht negativ und der Gesamtfehler wird für alle Datenpunkte aufsummiert.
Fehlerfunktion für Datenvektoren
Die quadratische Fehlerfunktion hängt von den Daten (also den Vektoren und reellen Sollwerten ab:
Bemerkung - Differenzierbarkeit - Betragsfunktion
Man könnte die Fehlerfunktion auch mit dem Betrag wie folgt definieren: . Die Betragsfunktion ist allerdings in 0 nicht differenzierbar. Daher wird der quadratische Fehler verwendet.
Gradient des Gesamtfehlers
Mit der Anwendung der Summenregel für den Gradienten einer Summe man den Gradienten des Gesamtfehlers wie folgt berechnen.
Implementation in R
In GNU R als OpenSource-Software zur Datenanalyse kann man die mathematische Definition des Gradienten implementieren. Die Implementation in R findet man bei der linearen Regression für Komponentenfunktionen.
Siehe auch
- Gradient
- linearen Regression für Komponentenfunktionen
- Kurs:Mehrdimensionale lineare Regression
- Wikibuch zu GNU R
Seiteninformation
Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Gradientenabstiegsverfahren' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Gradientenabstiegsverfahren/Gradient_-_lineares_Funktional
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.